
Containers
An Introduction

June 6, 2019

Ian Logan, Ian.Logan@anm.com

Sr. Systems Engineer, ANM

Klaus Mueller, Klaus.Mueller@anm.com

Solutions Architect, ANM

Presented by

Sponsored by



ANM: Committed to Innovation

 Excellence in IT Consulting, Since 1994



Commitment to Innovation

 98.6% Customer Sat Rating (2018)



Culture of Trust & Excellence

www.anm.com



Staying True to our Roots

www.ANM.com

Local Leadership, Offices and Staff

Close to Your Business

Understanding Local Challenges

Local Community Involvement



Committed to Innovation: Transformational Services

www.anm.com

Information Security - 2016

App Development 
(SalesForce) - 2016

Cloud & Automation 
(AWS & RedHat) - 2017

Technology Adoption - 2018

Delivering IT Expertise in Core Infrastructure:
• Campus and Data Center Networking
• Wired and Wireless Networking
• Data Center Compute and Storage 

(Converged & Hyperconverged solutions)
• Collaboration – voice, video, teams, 

conferencing, audio/visual design 
• Virtualization and Cloud – VMware, AWS



What is a container?



What is a container?

Shipping containers
• One size fits 

most loads
• Massive 

efficiency 
improvements

• Standard size 
and 
configuration

Source - https://container.training/intro-selfpaced.yml.html#25



What is a container?

Source - https://container.training/intro-selfpaced.yml.html#27

Containers:
• Portability for our 

applications
• Standard format
• Includes all the 

dependencies for 
the application

• Workload isolation 
at runtime





What is a container?
Compared to a virtual machine containers are

• Extremely lightweight

• Often stateless

• Somewhat OS agnostic
• Run an Ubuntu flavored container on CentOS

• Include just the binaries and libraries your app needs, 
run on any new enough Linux kernel



What is a container?

Source: https://container.training/intro-selfpaced.yml.html#31



What is Docker?
Docker
• Made using containers easy.
• Originally Linux centric but runs on many 

platforms today.
• Includes tools for defining a container, and 

distributing them (the registry).
• Has become widely used standard for 

building and packaging applications as 
containers.





What is Kubernetes?

• Open source container cluster manager

• Used as a backend in Google’s App Engine

• Runs on Private and Public Clouds, and even 
on Bare metal

• Becoming the de-facto standard for managing 
and orchestrating container workload clusters



Source: https://container.training/kube-halfday.yml.html#74

Kubernetes Cluster



Key definitions
• Container – lightweight standardized unit of software

• Repository – An online resource for hosting pre-made 
containers (images)

• Cluster – one or more nodes hosting containers

• Orchestration – software responsible for assigning 
containers to nodes in a cluster, and maintaining the health 
of those containers (i.e. restart dead containers)



How did we get to containers?



The explosion of computing in the campus

1950s 1960s 1970s 1980s 1990s



The explosion of computing on the campus

As computers have become more affordable and applications 
have grown in complexity we’ve seen:

• Application stability suffers as complexity grows.

• Application/workload isolation becomes critical.

• Applications often can’t co-exist on the same server
(Hi Java!).

• Servers became affordable enough to dedicate them 
to a single application.



How did we get to containers?
1990s – 2000s

Application isolation leads to server sprawl
• Most servers are 75-90% idle
• System administrators are stretched thinner and thinner
• Developers have to wait on system admins to order servers, 

and install software, sometimes for months



How did we get to containers?
2000s

Container technology is developed
• FreeBSD jails are introduced March 2000 in FreeBSD 4.0
• Solaris zones are introduced in 2005 with Solaris 10
• Google supports the development of name spaces in the 

Linux kernel (a key component of containers)
• Docker is founded in 2010 making Linux containers easy for 

developers to consume



How did we get to containers?
2010-today

What made Docker special?
• Docker makes it easy for a developer to spin up a container 

and run it almost anywhere
• Docker with its registry becomes the application delivery 

system

Downsides to plain Docker
• Docker doesn’t address the IT operations pain points around 

availability and reliability



How did we get to containers?
2010-today

Google releases Kubernetes in 2013
• Kubernetes is an open source system based on Google’s

internal systems called Borg and Omega
• Kubernetes is a container management platform that 

addresses most of IT operations pain points while still 
providing the agility developers crave



Container use cases
Containers can be used in many different ways, they broadly 
divide into two categories:
• Empowering developers with APIs for consuming 

infrastructure.
• Software packaging and distribution.

This has become the standard application design in the 
devops/cloud native world. Microservice architectures being the 
prime example of this design.



Empowering Developers
At Bats Matter: The VC 10% Rule

Quarterly Releases
1 Innovation Every 2.5 Years

Monthly Releases
3 Innovations Every 2.5 Years



Source: https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/docker-application-development-process/docker-app-development-workflow



Containers and software distribution
• Pre-built containers (images) are distributed via 

open and private registries.

• Registries are collections of downloadable pre-built 
images.

• Hub.docker.com (public)

• Amazon Elastic Container Registry (private)

• Google cloud container registry (private)



Container architecture

• Containers were originally intended to be stateless.

• Containers can be ephemeral, being created for a quick 
task and then going away when its done.

• Example: resizing an image for a webserver dynamically.

• Containers typically only have one (or a few) processes in 
them, the ideal microservices design.



Container architecture – stateless design

• Kubernetes’ orchestration engine provides the ability 
to dynamically scale your environment up and down.

• Scaling dynamically is much harder when there is 
local state in the container.



Containers and Networking
Container Networking can refer to some very different 
use cases.

• How do we network our containers together?

• Running containers on our network infrastructure.



Networking for containers
• Do we need to share a layer 2 segment between containers on 

different nodes?
• VXLAN overlays

• Do we need IP routing?
• BGP, OSPF, static

• Do we need to provide IP services for containers?
• Load balancing, NAT, DNS, DHCP

• Both open source and vendor solutions are available to enable 
advanced networking capabilities.

• E.g. Contiv, Weave, Flannel, Vmware NSX-T, Cisco ACI, etc. 



Containers on switches
Linux based switch operating systems with the ability to run containers as a 
service:
• Cisco IOS XE
• Arista EOS
• Cumulus Linux
Example use cases
• Performance monitoring (PerfSONAR)
• Configuration management (Puppet agent)
• Troubleshooting tools (tcpdump, Wireshark)



Containers and Storage
• Containers were originally stateless.
• Volumes were added afterwards to add 

stateful storage.
• Docker and Kubernetes both support volumes.
• There are many different kinds of volumes to 

chose from.
• Not all volumes can be shared with multiple 

containers/pods.
• There are multiple opensource and 

commercial solutions available.
• E.g. Cisco Hyperflex HCI integration, 

NetApp, Amazon S3 integration, native 
open source.



Kubernetes commercial products

You can build your own Kubernetes environment using 
open source components or you can buy a ready-made 
distribution.

• Cisco Container Platform

• RedHat OpenShift

• Pivotal Container Service (PKS)



An example of commercial Kubernetes

• Deploy Kubernetes clusters on 
HyperFlex IaaS (VMware)

• Container Networking 
(Contiv / ACI)

• Persistent storage (Flex Driver)

• Layer-4 and Layer-7 load balancing

• High availability

• Authentication with Active Directory

• Role based access control 

• Communication between containers 
and external 
VMs / BMs

• UI – Kubernetes, API

• Security (policies, encryption)

• Add / remove Kubernetes nodes

• Lifecycle management (OS updates, 
Kubernetes upgrades)

• Monitoring (Prometheus)

• Logging (EFK)

Kubernetes-as-a-Service

Setup ManageConsume



Buy it or build it?
Buy a commercial distribution of Kubernetes if:

• You’re in a hurry to get to production.

• You want technical support for production 
environments.

• You don’t want to become an expert on the 
intricacies of running a Kubernetes environment.



Kubernetes key concepts



Kubernetes key concepts - Nodes
Nodes
• Worker machine in 

Kubernetes
• Can be physical or virtual
• Used to be called a 

minion

Master Node

• Runs the k8s control 
plane

• Can be replicated for 
high availability



https://container.training/kube-halfday.yml.html#78

Kubernetes Control Plane



Kubernetes Control Plane

The control plane is all about maintaining your desired 
state. For example:

• If a pod should have 3 copies of a container, it will 
make sure it always has exactly 3.



Kubernetes key concepts – Objects and Names

Objects

• Persistent entities in k8s 
system

• Containers, resources, 
policies 

Names

• Every object has a 
unique name which is 
client provided

• Every object also 
receives a unique UID 
automatically



Kubernetes key concepts – Namespaces and Labels

Namespaces
• Multi-tenancy construct 

that allows for the reuse 
of names by different 
tenants

• Also a technology inside 
the Linux kernel for 
isolating processes

Labels
• Non-unique strings assigned 

to objects to group them by 
role or function

• Examples
• Tier=production
• App=web_server

• Policies can reference labels



Kubernetes key concepts – Containers and images

Images

• The collection of 
binaries, libraries, and 
other files needed to 
run an application

Container

• A running application 
with its associated 
resources (i.e. the 
image)

• Short lived and usually 
stateless



Kubernetes key concepts – Pods
Pods
• The smallest schedulable resource in k8s
• One or more containers live in a pod.
• All containers within a pod always run on 

the same Node
• All containers within a pod see the same 

files and can communicate via IPC, shared 
files, network stack on localhost

• Each Pod has its own unique intra-cluster 
IP

• Note: each container in the Pod shares the 
pods IP.



Kubernetes key concepts – Containers and images

Replicas

• Multiple copies of a pod.

• Normally scheduled on 
different nodes.

• Remember containers are 
normally stateless.



Source: https://www.slideshare.net/ZoharStolar/introduction-to-containers-running-dockers-using-kubernetes



Kubernetes key concepts – Services and Volumes

Services
• Any time we expose a Pod to the 

network outside of the Pod we 
call that a service

• Services can have 3 types of 
connectivity

• Intra-cluster only
• Node TCP/UDP port
• Externally Load Balanced

Volumes

• Storage that is associated with a 
pod

• Over 15 different types of 
volumes tailored to different 
use cases



Kubernetes key concepts – CNI

Container Network Interface (CNI)
• A generic plugin interface that 

allows for a wide variety of 
networking configurations.

• Anything from simple NAT to full 
routing with BGP is possible.

• Use VLANs, VXLAN, Geneve for 
Layer 2 between pods.

Network plugin
• A program that is run by the 

container management 
system.

• Creates a virtual ethernet 
interface for each container 
namespace and configures 
the cluster network.



Source: https://container.training/kube-halfday.yml.html#74

Kubernetes Cluster



Contiv – an example CNI plugin



Kubernetes – Lets build a pod
This is the specification for a pod
• Every spec must call out the 

apiVersion, kind, a name, and spec.
• The specification is similar to what 

we see in docker.
• This will download a MongoDB 

binary, and all of the Linux support 
binaries and librarys needed for 
MongoDB to run in the container



Kubernetes – Lets start a pod
Now let’s create the pod

• The pod specification is 
saved in db.yml

• We’ll use the kubectl 
command to create the 
pod

• “kubectl create –f 
db.yml”



Kubernetes – the kubectl command

The kubectl command is

• Our primary tool for interacting with k8s

• Developers can also write code to interact with the 
API if desired, but ops will mostly use kubectl or the 
dashboard



Resources to learn more about Kubernetes



Resource list

• Minikube – Kubernetes on your laptop

• Docker also runs great on a laptop

• Victor Farcic’s Kubernetes live class at safarionline
(runs every 2-3 months)

• The free trial is long enough to attend the class



Resource list
• Cisco DevNet

• https://developer.cisco.com

• Cisco Container Platform sandbox

• Catalyst 9000 sandbox

• Vmware Hands on Lab for NSX-T 

• https://labs.hol.vmware.com

• HOL-1926-01-NET, HOL-1926-02-NET



Resource list
• Building Catalyst 9000 containers

• https://github.com/maccioni/centos-vm-on-ios-xe

• Kubernetes docs
• https://kubernetes.io/docs/

• https://kubernetes.io/docs/concepts/

• O’Reilly Press
• Kubernetes: Up and Running

• Managing Kubernetes

https://kubernetes.io/docs/
https://kubernetes.io/docs/concepts/


Key take-aways
• Container technology like Docker and Kubernetes 

empower developers to be self service, improving turn 
around time between releases.

• Kubernetes provides IT operations tooling for building 
highly available and reliable container environments.

• Containers is a new software packaging and distribution 
format we will all need to know at some level.



ANM can help

We have partnerships with Cisco, Vmware, NetApp, 
RedHat…
• Cisco HyperFlex HCI platform
• Cisco Container Platform
• Vmware PKS
• Cisco ACI and Vmware NSX-T
• And more

www.anm.com
AM – Adam.Chavez@anm.com

http://www.anm.com/
mailto:Adam.Chavez@anm.com


Thank You!



Kubernetes – a few more kubectl commands

kubectl delete
• Delete a pod
• Kubectl delete –f <pod_description.yml>
• Kubectl delete <pod name>
Kubectl describe –f <pod_description.yml>
• Report all the configuration and present state 

information known the k8s for that pod



Kubernetes – a few more kubectl commands

Kubectl exec –it <pod> <command>

• Execute an interactive command (i.e. a shell) in the 
container

• “Kubectl exec –it –c <container> <pod> <command> 
“ if your pod has multiple containers in it



Kubernetes – checking pod status

Kubectl get pods

• Lists all currently defined pods

• Use –o wide to get more details on each pod



Kubernetes – executing commands in a pod

Kubectl exec db ps augxww
• Kubectl exec <pod> <command> <args>
• Here we see that the only two processes running in that 

container are MongoDB and our ps command. Process 
isolation!



Kubernetes – Exposing network ports
In this spec file:
• We create the db container again, with a 

replicaset for high availability
• We define a k8s service named “go-demo-2-

db” that will run on port 27017
• We can also use the ”kubectl expose” 

command to define a service 
• Services can be made available to

• Other pods in the cluster
• The external network
• An external load balancer (ie AWS ELB)



CCP Demo

Explore yourself:

devnetsandbox.cisco.com

Search for “container”



ACI Integration Demo

Explore yourself:

devnetsandbox.cisco.com

Search for “aci”



Running containers on IOS XE

You can try this out even if you don’t have a Catalyst 9000 
available!
DevNet Catalyst 9000 Sandbox. 
• To reserve the sandbox: go to 

https://devnetsandbox.cisco.com/
• click on Networking on the right pane
• select IOS XE on Catalyst 9000
• click Reserve and follow the instructions.

https://devnetsandbox.cisco.com/


Running containers on IOS XE
Create a DHCP scope to provide the container with an IP address


