



### COSMIAC

- COSMIAC proudly serves as a Tier-2 Research Center under the School of Engineering at the University of New Mexico
- COSMIAC's role is to promote aerospace innovation through the reliable and responsible use of configurable technology in military and defense systems
- COSMIAC's over 15,000 square foot facility provides excellent design capabilities including laboratories, offices and cleanroom space
- All COSMIAC personnel in New Mexico are US citizens with active security clearances (up to TS or Q for DOE)
- COSMIAC consists of approximately 50 staff, students, consultants and faculty



### **COSMIAC** Partners

- AFRL Space Vehicles and Directed Energy Directorates
- National Aeronautics and Space Administration Defense Threat Reduction Agency
- Millennium Engineering and Integration Company (RISE)
- Northrop Grumman
- KBRWyle Corporation (under FILMSS)
- AEgis Technologies (under D3I HSV and SCRA ABQ)
- Lockheed Martin (under EDS)
- ATA (under SVAT)
- Blue Origin
- Verus Research and other small businesses





### What is 5G?



### 40 years of mobile communications

- Each generation adapts to societies needs
  - First Generation: Mobile Voice Communication
  - Second Generation: Target clearer voice, start digital transmission
  - Third Generation: Beginning High quality mobile Broadband
  - Forth Generation: Higher end user data rates





### Brief History Standards



- Global Standardization has been the goal since the first generation of mobile communications.
  - 1G ) AMPS: developed in North America by Nordic Mobile Telephony
  - 2G) GSM: Developed by European
    Telecommunications Standards Institute ETSI
  - 3G) True global standardization given regional bodies (ETSI, TIA, ARIB) working on similar 3G technologies, especially true for WCDMA
- 1998 the regional standardization organizations came together and jointly created the Third-Generation Partnership Project (3GPP) [Developed 4G LTE, 5G standards]

| TSG GERAN                     | TSG RAN                                          | TSG CT Core Network               | TSG SA Service and           |
|-------------------------------|--------------------------------------------------|-----------------------------------|------------------------------|
| GSM EDGE                      | Radio Access Network                             | and Terminals                     | Systems Aspects              |
| Radio Access Network          | RAN WG1                                          | CT WG1                            | SA WG1                       |
| GERAN WG1                     | Radio Layer 1 spec                               | MM/CC/SM (lu)                     | Services                     |
| Radio Aspects                 | RAN WG2                                          | CT WG3                            | SA WG2                       |
| GERAN WG2                     | Radio Layer 2 spec                               | Interworking With External        | Architecture                 |
| Protocol Aspects<br>GERAN WG3 | Radio Layer 3 RR spec                            | CT WG4                            | SA WG3<br>Security           |
| Terminal Testing              | lub spec, lur spec, lu spec                      | MAP/GTP/BCH/SS                    | SA WG4                       |
|                               | UTRAN 0&M requirements                           | CT WG6                            | Codec                        |
|                               | RAN WG4<br>Radio Performance<br>Protocol Aspects | Smart Card Application<br>Aspects | SA WG5<br>Telecom Management |
| GERAN WG3                     | RAN WG5                                          |                                   | SA WG6                       |
| Terminal Testing              | Mobile Terminal                                  |                                   | Mission-Critical Applicatons |
| GERAN WG1<br>Radio Aspects    | Conformance Testing<br>RAN WG6                   |                                   |                              |
| GERAN WG2<br>Protocol Aspects | GSM EDGE<br>Radio Access Network                 |                                   |                              |



### ITU and 3GPP 2020 requirements for 5G

• The International Telecommunication Union (ITU) : United Nations organization that regulates the global use of mobile telecommunication. The ITU sets the guidelines and requirements by which 3GPP must work.

#### Main Requirements for 5G


- >10 Gb/s peak data rates
- 98% Spectral Efficiency
- >1 M/km2 connections
- Very low Latency
- Ultra High Reliability

| Metric                     | Requirement                                                                     |  |
|----------------------------|---------------------------------------------------------------------------------|--|
| Peak Data Rate             | DL: <b>20 Gb/s</b><br>UL: 10 Gb/s                                               |  |
| Peak Spectral Efficiency   | DL: <b>30 b/s/Hz</b> (assuming 8 streams)<br>UL: 15 b/s/Hz (assuming 4 streams) |  |
| User Experienced Data Rate | DL: 100 Mb/s<br>UL: 50 Mb/s                                                     |  |
| Area Traffic Capacity      | Indoor hotspot DL: 10 Mb/s/m <sup>2</sup>                                       |  |
| User Plane Latency         | eMBB: 4 ms<br>URLLC: <b>1 ms</b>                                                |  |
| Control Plane Latency      | 20 ms (encouraged to consider <b>10 ms</b> )                                    |  |
| Connection Density         | 1M devices per km <sup>2</sup>                                                  |  |
| Reliability                | 99.9999% success prob.                                                          |  |
| Bandwidth                  | >100 MHz; up to 1 GHz in > 6 GHz                                                |  |



### **5G Standardization & Timeline**

- Schedule confirmed March 2017
- 3GPP split the 5G standard into two releases:
  - Release 15 (5G Phase 1 posted June 2018) Defines New-Radio 5G-NR and Phase 1 of new core 5GCN
  - Release 16 (5G Phase 2 set to post March 2020) Continues with 5G NR optimization and introduces new use cases

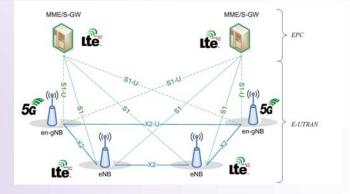


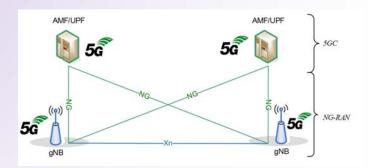
<section-header><section-header>



#### Release 15: NR Phase 1 Common elements between LTE and NR

|                              | LTE                                                 | NR                                                              |  |
|------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|--|
| Frequency of Operation       | Up to 6 GHz                                         | Up to 6 GHz, ~28 GHz, ~39 GHz, other mmWave bands (Upto 52 GHz) |  |
| Carrier Bandwidth            | Max: 20 MHz                                         | Max: 100 MHz (at <6 GHz)<br>Max: 1 GHz (at >6 GHz)              |  |
| Carrier Aggregation          | Up to 32                                            | Up to 16                                                        |  |
| Analog Beamforming (dynamic) | Not Supported                                       | Supported                                                       |  |
| Digital Beamforming          | Up to 8 Layers                                      | Up to 12 Layers                                                 |  |
| Channel Coding               | Data: Turbo Coding<br>Control: Convolutional Coding | Data: LDPC Coding<br>Control: Polar Coding                      |  |
| Subcarrier Spacing           | 15 kHz                                              | 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz                        |  |
| Self-Contained Subframe      | Not Supported                                       | Can Be Implemented                                              |  |
| Spectrum Occupancy           | 90% of Channel BW                                   | Up to 98% of Channel BW                                         |  |

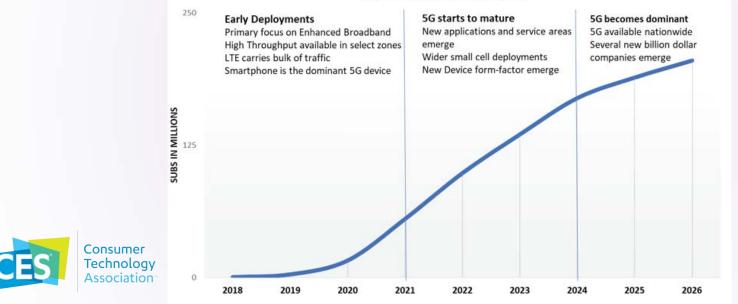




### **Transition to 5G**

- Non-Standard Architecture (NSA)
  - In this configuration, only the 4G services are supported, but enjoying the capacities offered by the 5G Radio (lower latency, etc).

### Standard Archetecture (SA)

 In the SA architecture, the NR base station (logical node "gNB") connects each other via the Xn interface. The NG-RAN for SA architecture connects to the 5GCN network using the NG interface.






# N.M.

### Not an Overnight Transition

#### Expected 5G Growth (US)





low cost, low energy consumption

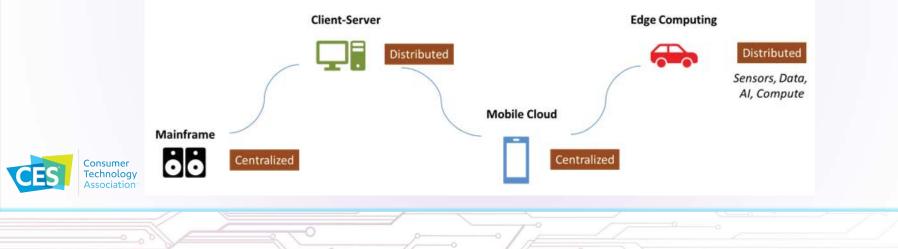
### **Three Distinct Classes of 5G**

- Enhanced Mobile Broadband (eMBB)
  - Next evolution of the mobile-broadband services of today
- Massive Machine-type Communication (mMTC)
  - Services that are characterized by a massive number of devices, for example, remote sensors, actuators, and monitoring of various equipment.
- Ultra-reliable and Low-latency
   Communication (URLLC)
  - Type-of-services are envisioned to require very low latency and extremely high reliability





Very low latency, very high reliability and availability




## Why do We Care?



### **Next Wave of Computing**

"5G will transform computing itself and play a significant role in the rise of the edge computing cycle. Every decade or so we enter a new computing paradigm oscillating between centralized and distributed. After reaping the benefits of mobile+cloud, the Connected Intelligence Edge is going to transform industries and create new use cases. " **CTA Report** "Market impact of 5G" **Jan 2019** 





Mask—RCNN on Intel E3—1535m v5 CPU, Inference time for a frame : 3341 ms

car:0.89



car:0.9

car:0.95

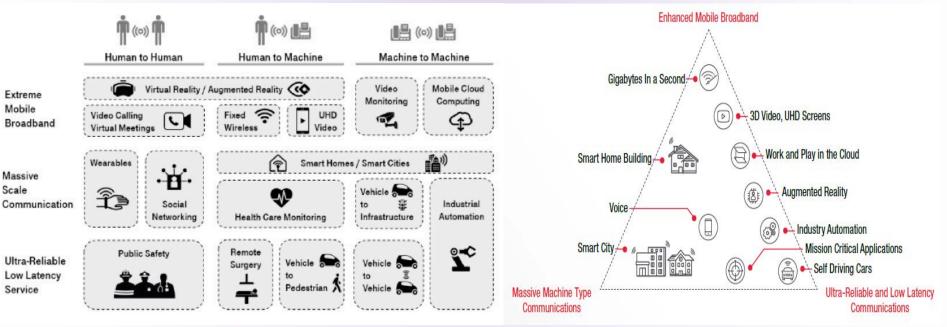
R

car:0.02

18

car:0.98

car:0.84


person:0.98person:0.99 person:0.98

traffic light:0.74

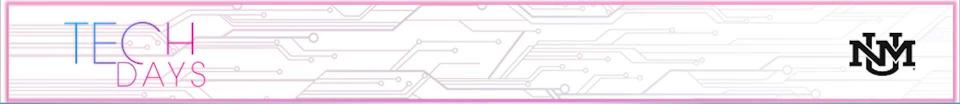
traffic light:0.99



### Many Diverse Applications/Users for 5G








How much information is in a small area of Downtown?





# This virtual space would become a livestream digital copy of the physical world



# **Thank You**