

# AI/DL for Student Success & Digital Transformation

Santosh Rao Senior Technical Director, Al & Data Engineering, NetApp June 6 – 7, 2019

Santosh Rao – Sr Technical Director, NetApp Tyler Wagenseller – NetApp SLED Account Exec Sandra Nicholson – NetApp Senior Solutions Eng



### NetApp

| What do we do?      | <ul> <li>#1 Provider of storage to the US Federal Govt.</li> <li>#1 Storage solution options with AWS/Azure/Google</li> <li>#1 Branded Storage OS</li> <li>#1 Storage &amp; Device Management Software</li> <li>#1 Integrated Infrastructure &amp; Certified Reference Systems in Capacity Shipped</li> <li>Leader in Storage for AI, ML, DL, DevOps</li> <li>Leader in Object Storage</li> </ul> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Some Focus<br>Areas | <ul> <li>AI, ML, DL, Analytics, DevOps</li> <li>Enterprise Flash</li> <li>HCI for End User Computing and Cloud Data Solutions</li> </ul>                                                                                                                                                                                                                                                          |
| Founded in 1992     | <ul> <li>Fortune 500 in business since 1992</li> </ul>                                                                                                                                                                                                                                                                                                                                            |

NetApp devices are installed in some of the worlds largest and exotic environments such as the Hadron Supercollider, the largest machine ever built by mankind, Lawrence Livermore Labs with the worlds largest contiguous file system, the worlds largest database at SAP and even in the International Space Station.





© 2019 NetApp, Inc.





### AI - Impactful

Rapid AI adoption world wide







**\$59.8 Billion** Growth of AI software market in 2025







**190%** AI patents grew by over 5 yrs



**71%** Automation potential in Manufacturing

### 4<sup>t</sup> sta

4<sup>th</sup> largest number of Al startups in Berlin







#### **Refining Analytics doesn't lead to Artificial Intelligence**





### Analytics vs A.I



### 2020

### A.G.I

Deep Reinforcement Learning

Computational Neuroscience

### A.I

Machine Learning Deep Learning

### Analytics

Big Data Analytics Hadoop,Spark Splunk

NetApp







Source: Kenji Doya Complementary roles of basal ganglia and cerebellum in learning and motor control

#### **Cellular Network Traffic Scheduling with Deep Reinforcement Learning**

Sandeep Chinchali<sup>1</sup>, Pan Hu<sup>2</sup>, Tianshu Chu<sup>3</sup>, Manu Sharma<sup>3</sup>, Manu Bansal<sup>3</sup>, Rakesh Misra<sup>3</sup> Marco Pavone<sup>4</sup> and Sachin Katti<sup>1,2</sup>

<sup>1</sup> Department of Computer Science, Stanford University

<sup>2</sup> Department of Electrical Engineering, Stanford University

<sup>3</sup> Uhana, Inc.

<sup>4</sup> Department of Aeronautics and Astronautics, Stanford University {csandeep, panhu, pavone, skatti}@stanford.edu, {tchu, manusharma, manub, rakesh}@uhana.io



Figure 1: Time-variant congestion patterns in Melbourne.

### Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning

Kaixiang Lin Michigan State University linkaixi@msu.edu Renyu Zhao, Zhe Xu Didi Chuxing {zhaorenyu,xuzhejesse}@didichuxing. Jiayu Zhou Michigan State University jiayuz@msu.edu

com



# Human-level control through deep reinforcement learning

Volodymyr Mnih<sup>1</sup>\*, Koray Kavukcuoglu<sup>1</sup>\*, David Silver<sup>1</sup>\*, Andrei A. Rusu<sup>1</sup>, Joel Veness<sup>1</sup>, Marc G. Bellemare<sup>1</sup>, Alex Graves<sup>1</sup>, Martin Riedmiller<sup>1</sup>, Andreas K. Fidjeland<sup>1</sup>, Georg Ostrovski<sup>1</sup>, Stig Petersen<sup>1</sup>, Charles Beattie<sup>1</sup>, Amir Sadik<sup>1</sup>, Ioannis Antonoglou<sup>1</sup>, Helen King<sup>1</sup>, Dharshan Kumaran<sup>1</sup>, Daan Wierstra<sup>1</sup>, Shane Legg<sup>1</sup> & Demis Hassabis<sup>1</sup>

#### Curriculum Learning

Yoshua Bengio<sup>1</sup> Jérôme Louradour<sup>1,2</sup> Ronan Collobert<sup>3</sup> Jason Weston<sup>3</sup> (1) U. MONTREAL, P.O. Box 6128, MONTREAL, CANADA (2) A2IA SA, 40BIS FABERT, PARIS, FRANCE (3) NEC LABORATORIES AMERICA, 4 INDEPENDENCE WAY, PRINCETON, NJ, USA

When a large language model is trained on a sufficiently large and diverse dataset it is able to perform well across many domains and datasets. GPT-2 zero-shots to state of the art performance on 7 out of 8 tested language modeling datasets. The diversity of tasks the model is able to perform in a zero-shot setting suggests that high-capacity models trained to maximize the likelihood of a sufficiently varied text corpus begin to learn how to perform a surprising amount of tasks without the need for explicit supervision.<sup>5</sup>

#### Special computation properties



Number Representation



- Deep Learning is Empirically Scaleable (Baidu)
- Computationally Homogenous
- Constant runtime & memory use
- Highly Portable
- Easily Baked into silicon → "Semiconductor Rennaisance"



- Relax Precision : Small integers are better
- Relax Synchronization : data races are better
- Relax Communication : sparse communication is better
- Relax Cache Coherence : incoherence is better
   "Olukutan,Stanford Neurips Keynote 2018"

### Data Pipeline for AI Workflow

Scale and Optimize Each Stage of the Data Pipeline



### Full Scale-out ONTAP AI with DGX-1

24-node A800 cluster, driving 108 DGX-1's





### Full Scale-out ONTAP AI with DGX-2

24-node A800 cluster, driving 36 DGX-2's





### **Dense Cabinet for Al**

#### **Deliver Dense Cabinet for Exascale Al**

#### Challenge:

• Data centers facilities lack the power and cooling for the latest highperformance AI computing infrastructure.

#### New Capability:

- Dense and Modular Dynamic Density Control (DDC) liquid-air cooled cabinet for Al
- This cabinet combines the efficiency of water with the flexibility of air, cooling up to 52kW of power load in a 45U cabinet.
- Cabinets can be deployed in any environment.
- Provides clean-room environment, guaranteed air flow, integrated security, and fire suppression.

### 



SCALEMATRIX & DDC CABINETS SUPPORT 45U & 52kW

| 3 x 10U NVIDIA® D | IGX-2™… 36kW |
|-------------------|--------------|
| Total kW          | 40kW         |





NetApp

### ARTIFICIAL INTELLIGENCE Trends >

#### Artificial Intelligence Timeline

#### Why Now?



#### **Artificial Intelligence**



#### **Artificial Intelligence**



**Robustness Compactness Interoperability Security Social, Political, Ethics** 

#### Artificial Intelligence

#### Machine Learning

K-Means Logistic Regression Decision Trees Random Forests

#### **Deep Learning**

CNN RNN LSTM

GAN

Q LearningDeepTD LearningReinforcementDQNLearningPrioritized Experience ReplayActor CriticPolicy Gradient





**25** © 2019 NetApp, Inc.

NetApp

### AI in Manufacturing

#### Top use cases

| Use of connectivity technologies and big         | g data analyti  | cs is set to increase drama     | itically             |
|--------------------------------------------------|-----------------|---------------------------------|----------------------|
|                                                  | In use<br>today | Change over the next five years | In use in five years |
| Predictive maintenance                           | 28%             | +38%                            | 66%                  |
| Big data driven process and quality optimisation | 30%             | +35%                            | 65%                  |
| Process visualisation/automation                 | 28%             | +34%                            | 62%                  |
| Connected factory                                | 29%             | +31%                            | 60%                  |
| Integrated planning                              | 32%             | +29%                            | 61%                  |
| Data-enabled resource optimisation               | 52%             | +25%                            | 77%                  |
| Digital twin of the factory                      | 19%             | +25%                            | 44%                  |
| Digital twin of the production asset             | 18%             | +21%                            | 39%                  |
| Digital twin of the product                      | 23%             | +20%                            | 43%                  |
| Autonomous intra-plant logistics                 | 17%             | +18%                            | 35%                  |
| Flexible production methods                      | 18%             | +16%                            | 34%                  |
| Transfer of production parameters                | 16%             | +16%                            | 32%                  |
| Modular production assets                        | 29%             | +7%                             | 36%                  |
| Fully autonomous digital factory                 | 5%              | +6%                             | 11%                  |

Q: How relevant are the following concepts for your company? Base: all respondents 1) Predictive maintenance

- Predicted increase over 5 years (PwC)
- 2) Quality optimization
- 3) Process visualization and automation
- 4) Connected factories
- 5) Resource optimization
- 6) Improve product effectiveness



### AI in Healthcare

#### Variety of use cases



- Al applications in healthcare could save up to \$150B annually by 2026
- Al health market is expected to reach \$6.6B by 2021 (40% CAGR)
- AI can address an estimated 20% of unmet clinical demand



### AI in Telecom

Top Use Cases

| Chat Bots               | <ul> <li>Automate customer service inquires</li> <li>Routing customers to agents</li> <li>Routing prospective customers to sales</li> </ul>                                                                      |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Speech & Voice Services | <ul> <li>Alternative to remote control units</li> <li>Allows customers to explore and purchase media content</li> </ul>                                                                                          |  |  |
| Predictive Maintenance  | <ul> <li>Fix problems w/ hardware (cell towers, power lines etc.) before they break</li> <li>Detects signals and breakpoints that usually lead to failures (no human intervention)</li> </ul>                    |  |  |
| Network<br>Optimization | <ul> <li>Intelligent network planning and optimization</li> <li>Al algorithms drive sophisticated network analysis and simulation efforts</li> <li>Predicts optimal connectivity for telecom networks</li> </ul> |  |  |



### AI in Government

#### Massive savings in labor times

#### Figure 11. Time and money savings from AI under three levels of investment

| Level of investment | evel of investment Savings category |                | State government |  |  |
|---------------------|-------------------------------------|----------------|------------------|--|--|
|                     | Annual person-hours 96.7 million    |                | 4.3 million      |  |  |
| Low                 | Hours as percentage of total        | 2.23%          | 3.94%            |  |  |
|                     | Salary                              | \$3.3 billion  | \$119 million    |  |  |
| Medium              | Annual person-hours                 | 634 million    | 15.3 million     |  |  |
|                     | Hours as percentage 14.63%          |                | 13.93%           |  |  |
|                     | Salary                              | \$21.6 billion | \$420 million    |  |  |
| High                | Annual person-hours                 | 1.2 billion    | 33.8 million     |  |  |
|                     | Hours as percentage of total        | 27.86%         | 30.84%           |  |  |
|                     | Salary                              | \$41.1 billion | \$931 million    |  |  |

Labor time savings with AI

- 2-4% time savings at low levels of effort
- 13-15% with mid level
- 27-30% time savings within 5-7 yrs at high levels of effort

Source: Deloitte simulation of likely changes to labor inputs to government tasks.

Deloitte University Press | dupress.deloitte.com

~

### AI in Retail

Top use cases

| Communications       | <ul> <li>Personalization &amp; recommendation engines</li> <li>Chatbots for customer service</li> <li>Voice shopping with voice enabled devices</li> </ul> |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pricing Optimization | <ul> <li>Forecasting and dynamic pricing</li> <li>Competitive pricing</li> <li>Analyze sensitivities to price changes</li> </ul>                           |  |  |
| Inventory Management | <ul> <li>Demand Forecasting</li> <li>Manage inventory levels, reduce losses from out-of-stock &amp; overstock</li> <li>Allocation &amp; audits</li> </ul>  |  |  |
| Experiential Retail  | <ul> <li>New ways to engage with customers</li> <li>Discover, Auto-suggestions</li> <li>Buy and pay</li> </ul>                                             |  |  |



### AI in Financial Services

Top use cases

- Front Office
  - Credit Scoring
  - Insurance Premiums
  - Customer Service ("chat-bots")
- Back Office
  - Risk Management Modeling
    - Stress Testing
    - Model Validation; back testing
  - Capital Optimization
    - Risk Weighted Assets
    - Margin Valuation Adjustment
  - Market Impact Analysis
    - Identify assets that behave similarly
    - Timing / Scheduling of trades

- Trading & Portfolio Management
  - Devise Investment Strategies
  - Trading Execution (Sell-orders)
  - Managing Risk
  - Identify new signals

- Regulatory Compliance
  - Enhance efficiencies of supervision and surveillance



# **AI Solution Architecture**





### **DL Model Training Flow**



**33** © 2019 NetApp, Inc.

#### NetApp

### Meet Diverse Needs across Data Science and Infra Functions

#### **Data Scientists**

Real-world Data for AI / DL

#### Need Agile Model DevOps :

- Refreshed access to Production Datasets
- Hybrid Cloud for Model Dev
- Distributed Data Science
- Diverse Data Sources
- Model and Data Parallelism
- Multi-Tenant Model Serving
- From Model to Application

#### **Data Architects**

Future Proof Architecture

#### Seek Extensible Architecture:

- Architecture Scales from PoC to Production
- Future Proof to absorb technology changes
- TCO for Massive Datasets
- Maximize Utilization
- Global Scale

#### **Data/IT Admins**

Lowest TCO in face of shrinking budgets

#### Balance Cost & TTM :

- Leverage vs. Dedicate HW Infra
- Stable Operations & Upgrades
- Supported Components & Ecosystems
- Diverse needs across Big Data, AI/DL and HPC

NetApp

#### Balanced Architecture to Deliver for Stakeholders

### **Deployment Options for Al**

Where is the source data?

| Move Data into<br>Al Platform                                                                                                                                                                                                     | Data In-Place                                                                                                                                                       | Co-Lo Solution                                                                                                          | Source Data in<br>Cold Storage                                                                                                                 | Cloud<br>Deployment                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>80 - 90% deployments</li> <li>HDFS, Splunk, NoSql ,<br/>Lustre, GPFS →<br/>ONTAP AI (NFS,<br/>GPUs)</li> <li>Leverage Data Movers<br/>to move data into<br/>ONTAP AI</li> <li>FabricPool for data<br/>tiering</li> </ul> | <ul> <li>All reside and deploy<br/>on ONTAP</li> <li>Concept of Unified<br/>Data Lake</li> <li>Data on ONTAP AI</li> <li>FabricPool for data<br/>tiering</li> </ul> | <ul> <li>Greater control of data</li> <li>NPS solution</li> <li>Data on NPS, GPUs/<br/>Services on the Cloud</li> </ul> | <ul> <li>Data is moved in from<br/>cold data tiers for<br/>model training</li> <li>Move data from<br/>StorageGrid into<br/>ONTAP AI</li> </ul> | <ul> <li>Data / GPUs<br/>provisioned on the<br/>public clouds</li> <li>Use Cloud Volumes<br/>Service for file<br/>services</li> <li>GPUs on Cloud for<br/>compute</li> </ul> |



### Move Data to AI Platform

#### Data movement from HDFS, MapR-FS, GPFS, Lustre, S3 to AI Platform

Move Data into ONTAP AI



### In-Place Data with Hybrid Cloud Option

#### Unified data lake serving CPU and GPU Compute Clusters

#### Data In-Place





## Resources



#### netapp.com/ai

### **Technical Whitepapers**

- ONTAP AI Reference architecture NVA-1121-design
- ONTAP AI Deployment guide NVA-1121-deploy
- <u>CVD: FlexPod Datacenter for AI/ML design guide</u>
- <u>Building a Data Pipeline for Deep Learning</u> WP-7299
- Edge to Core to Cloud white paper WP-7271
- Al with GPUs on AWS & Cloud Volumes Service TR-4718
- Scalable AI Infrastructure WP-7267
- Designing data pipeline for your AI workflows WP-7264
- ONTAP AI Solution brief SB-3939
- IDC Technology Spotlight paper

### Al Blogs

- Your Guide to Everything NetApp at GTC 2019
- Al Across Industries: Manufacturing, Telecom, & Healthcare
- How to Configure ONTAP AI in 20 Minutes with Ansible
- Bridging the CPU and GPU Universes
- Is Your Infrastructure Ready for AI Workflows in Production?
- Accelerate I/O for Your Deep Learning Pipeline
- Addressing AI Data Lifecycle Challenges with Data Fabric
- Choosing an Optimal Filesystem for the AI Pipeline
- Five Advantages of ONTAP AI for AI and Deep Learning
- Deep Dive into ONTAP AI Performance and Sizing



# **Thank You**

### **Questions**?

